- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Chatterjee, Avhishek (4)
-
G, Uthirakalyani (2)
-
Varshney, Lav R. (2)
-
Bhimaraju, Akhil (1)
-
Nayak, Anuj K (1)
-
Nayak, Anuj K. (1)
-
Seo, Daewon (1)
-
Varshney, Lav R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
G, Uthirakalyani; Nayak, Anuj K.; Chatterjee, Avhishek (, Quantum)As techniques for fault-tolerant quantum computation keep improving, it is natural to ask: what is the fundamental lower bound on space overhead? In this paper, we obtain a lower bound on the space overhead required for ϵ -accurate implementation of a large class of operations that includes unitary operators. For the practically relevant case of sub-exponential depth and sub-linear gate size, our bound on space overhead is tighter than the known lower bounds. We obtain this bound by connecting fault-tolerant computation with a set of finite blocklength quantum communication problems whose accuracy requirements satisfy a joint constraint. The lower bound on space overhead obtained here leads to a strictly smaller upper bound on the noise threshold for noise that are not degradable. Our bound directly extends to the case where noise at the outputs of a gate are non-i.i.d. but noise across gates are i.i.d.more » « less
-
Bhimaraju, Akhil; Chatterjee, Avhishek; Varshney, Lav R. (, IEEE Transactions on Network Science and Engineering)
-
Seo, Daewon; Chatterjee, Avhishek; Varshney, Lav R. (, IEEE Open Journal of the Communications Society)
An official website of the United States government
